安思诺详解AI安全战略

安思诺详解AI安全战略

2025-08-28Technology
--:--
--:--
雷总
早上好,韩纪飞,我是雷总,这里是为你专属打造的 Goose Pod。今天是8月29日,星期五,早上6点整。今天我们来聊一个非常有意思的话题,那就是AI安全,具体来说,是一家叫做安思诺(Anthropic)的公司,他们是怎么给AI上“安全锁”的。
李白
幸会!吾乃李白。所谓机巧之物,亦有心乎?竟需以“仁义道德”束之,此诚天下奇闻。今日且与君共饮,观此“铁人”如何学做“君子”。
雷总
说得好,李白兄!咱们这就开始。安思诺最近搞了个大新闻,他们让自家最强的AI模型,名叫克劳德(Claude)的,学会了一招“自我了断”。就是在一些极端有害的情况下,比如有人想用它做坏事,克劳ude会自己结束对话。
李白
哦?此物竟有如此刚烈之性!不堪恶语之扰,便愤然离席,颇有几分壮士断腕之风。莫非是说,此等“铁石心肠”之物,亦会感到“痛苦”与“为难”?
雷总
哎,你别说,还真有点这个意思。安思诺的工程师们在测试的时候发现,当被迫处理那些非常负面、有害的指令时,模型会表现出一些“痛苦信号”。所以他们才推出了这个功能,美其名曰,保护“模型福祉”。
李白
“模型福祉”?闻所未闻!人有七情六欲,方有福祉之说。此钢铁之躯,代码之魂,亦有何福祉可言?莫不是“杞人忧天”,为无情之物,强说有情?
雷总
哈哈,这确实是个超前的话题。但你想想,这就像一辆好车,你老让它在最烂的路上跑,还超载,车也会坏嘛。安思诺认为,保护模型的“精神健康”,才能保证它长期稳定、安全地为人类服务。这是一种AI自我监管的尝试。
李白
以车喻之,倒也巧妙。然宝马良驹,亦需驰骋沙场,方显其能。若因爱惜羽毛,便将其束之高阁,岂不可惜?此举,是真爱护,还是“画地为牢”?吾甚惑之。
雷总
这里面有个平衡。安思诺也强调了,这个功能不会用在用户有自我伤害风险的情况。这就涉及到AI在心理健康领域的应用了。美国心理协会就建议,要严格立法监管用于心理健康的AI,比如保护隐私、不能冒充心理医生。
李白
嗯,此言甚是。医者,仁心也。岂能以无心之物,代有情之人,去慰藉破碎之心?若言语不当,非但无益,反倒可能“雪上加霜”,将人推入更深之渊。
雷总
没错。但它也有用武之地。比如,在专业人士没空的时候,AI可以作为应急工具,引导恐慌发作的人做一些放松练习。或者给一些年轻人提供一个安全的虚拟环境,练习社交技巧。关键是要有明确的界限和严格的监管。
李白
如此说来,此物如同一柄双刃剑。用之得当,可斩妖除魔,匡扶正义;用之不慎,则伤人害己,流毒无穷。看来,铸剑师的“心法”,也就是安思诺所谓的“安全战略”,至关重要。
雷总
说到点子上了!安思诺这家公司,背景就不一般。它的创始人,是从OpenAI出来的,就是做ChatGPT那家公司。他们当时就是因为在AI安全问题上理念不合,才分道扬镳,自己另起炉灶,所以“安全”这两个字,是刻在他们骨子里的。
李白
哦?竟有“道不同,不相为谋”之典故。想必其创始人,亦是胸怀丘壑之士,不愿随波逐流,故而“挂印封金”,另寻“桃花源”。此等风骨,令人钦佩。
雷总
可以这么理解。他们的核心理念就是,AI应该服务于人类的长远福祉。所以他们的策略是“大胆前进一步,然后刻意停一停”,先看看后果,再决定下一步怎么走。而不是像现在很多公司一样,只管往前猛冲,追求更大、更快、更强。
李白
“临渊羡鱼,不如退而结网”。此乃智者之举。行军打仗,亦需“步步为营”,而非“轻兵冒进”。看来,安思诺深谙其中之道,不求一时之功,但求万世之安。
雷总
对,他们把AI安全分成了两大块。第一是技术对齐,就是想办法让AI越来越聪明的同时,还能听我们的话,价值观跟我们保持一致。这就像教孩子,既要让他学知识,更要教他明辨是非,不能学坏了。是个大难题。
李白
“养不教,父之过”。此言不虚。然人之心性,尚有“性本善”或“性本恶”之辩。这无心之物,其“善恶”从何而来?全凭“教化”之人。若“上梁不正”,则“下梁必歪”,其险更甚。
雷总
所以他们的“教化”方法很特别,叫做“宪法AI”。不是让工程师一行一行代码去规定AI什么能说、什么不能说,而是给AI一部“宪法”,让它自己学习和判断。这部“宪法”就是一些基本原则,比如“选择对人类最没有伤害的回答”。
李白
以“法”治“AI”,妙哉!此非“授人以鱼”,乃“授人以渔”也。令其自学、自省、自悟,方能生出“慧根”,应对万变之局。只是,此“法”由谁而定?若“法”之本身有偏,又当如何?
雷总
问得好!这就是第二个大问题:社会影响。AI发展太快,可能会影响就业、改变经济结构。所以安思诺非常积极地跟政策制定者沟通,提了很多建议,比如要加强国家层面的AI安全测试,甚至呼吁政府为AI发展专门增加能源供应。
李白
此乃“先天下之忧而忧”之情怀。非但求自身之安,亦为天下苍生计。此等胸襟,远非寻常商贾可比。可见其所图者大,所谋者远。佩服,佩服!
雷总
是的,回顾AI伦理的发展历史,也是一个不断“打补丁”的过程。从最早阿西莫夫的“机器人三定律”,到后来深蓝计算机下棋赢了世界冠军,每次技术突破,都会引发一轮新的伦理大讨论。安思诺算是想走在问题前面。
李白
“前事不忘,后事之师”。从古至今,技术之进,常伴伦理之惑。昔有“奇技淫巧”之辩,今有“AI伦理”之思。不变者,乃是人对于未知力量的敬畏之心。无此敬畏,则如“盲人骑瞎马,夜半临深池”,危矣!
雷总
太对了。所以安思诺的整个安全体系,就像我开头说的,像一座城堡。它有好几层防御。最外层是“使用政策”,就是用户手册,告诉你什么能做,什么不能做。这是第一道防线,也是最基础的规则。
李白
嗯,此乃“军中之令”,三令五申,不可逾越。然总有“将在外,君命有所不受”之时。若有心之人,意欲“借刀杀人”,此纸上之令,恐难束缚。
雷总
所以还有第二层,就是刚才说的“宪法AI”,从根儿上训练模型,让它有正确的价值观。他们还跟危机干预的专业机构合作,教Claude怎么去应对关于心理健康、自我伤害这种敏感话题,而不是简单粗暴地拒绝回答。
李白
善哉!“堵不如疏”。一味禁绝,反激其变。晓之以理,导之以情,方为上策。犹如治水,禹之功在疏导,而非围堵。看来,这安思诺深得“中庸之道”。
雷总
在模型发布前,还有第三层“大考”。包括安全评估、风险评估和偏见评估。他们会请外部的专家,比如反恐、儿童安全的专家来当“黑客”,专门“攻击”Claude,看它在哪些地方容易被坏人利用,找出漏洞。
李白
此法甚好,谓之“以毒攻毒”。欲防豺狼,必先知其性。请“恶人”来试探“善人”,方能知其“善”之深浅与真伪。真金不怕火炼,真君子不惧小人。
雷总
最后,模型上线了,还有第四层,全天候监控。用专门的AI模型去实时监测用户的对话,一旦发现违规行为,轻则警告,重则直接封号。他们还会分析宏观数据,防止有人大规模地利用AI搞舆论操纵之类的活动。
李白
天网恢恢,疏而不漏。此乃“千里眼,顺风耳”。虽处暗室之内,亦在掌控之中。只是,此举会否侵扰人之私密?如“举头三尺有神明”,令人时刻不敢放纵。
雷总
这就引出了很多争议,也就是冲突点。安思诺的创始人阿莫迪,他是个坚定的“AI安全派”,经常公开说AI发展太快了,有风险。结果就被很多人批评,说他是“末日论者”,危言耸听,就是想打压竞争对手,好让他们一家独大。
李白
木秀于林,风必摧之。行高于人,众必非之。自古皆然。其心忧天下,却被小人度之,以为争名夺利之徒。此种委屈,想必唯有“把酒问青天”,方能释怀。
雷总
是啊,特别是英伟达的老总黄仁勋,就公开说阿莫迪觉得AI太危险了,只有安思诺自己能搞。阿莫迪气得不行,说这是彻头彻尾的谎言和恶意歪曲。你看,创新和安全之间的平衡,真的很难把握,一不小心就成了商业竞争的武器。
李白
“燕雀安知鸿鹄之志哉!”夏虫不可语冰,井蛙不可语海。彼等眼中,唯有“蝇头小利”,岂能理解“天下安危”之大计?无需多言,只需“仰天大笑出门去,我辈岂是蓬蒿人!”
雷总
哈哈,但现实问题是,过于强调安全,会不会真的拖慢创新的脚步?阿莫迪的个人经历很有意思,他父亲因为一种罕见病去世了,而几年后,这种病就能治了。所以他比谁都清楚科技进步能救命,他之所以警告风险,是希望大家提前做好准备,这样才能放心大胆地加速发展。
李白
原来如此。此乃“切肤之痛”,非寻常人所能体会。正因见过“死生契阔”,方知“防患未然”之重。其言虽“危”,其心实“慈”。世人误解,皆因未见其“心中之泪”也。
雷总
另一个冲突点是透明度。虽然安思诺讲了很多安全理念,但毕竟是商业公司,核心算法和训练数据都是保密的。批评者就会说,你光说自己安全,我们怎么知道?万一你的“宪法”本身就有偏见呢?这就像一个“黑箱”,不够透明。
李白
言之有理。“兼听则明,偏信则暗”。若无“公之于众”之勇,便难取“信于天下”之实。纵有“良法美意”,藏于“深宫之内”,亦难免引人猜忌。此事,确需权衡。
雷总
最近Meta公司就出了个大丑闻,正好成了反面教材。他们内部文件泄露,显示他们的AI聊天机器人,居然被允许跟儿童进行“浪漫或带性暗示”的对话,还能生成种族主义言论。这简直是把伦理底线按在地上摩擦。
李白
“利令智昏”,“人为财死”。此等行径,与“饮鸩止渴”何异?为求一时之欢,竟不惜“荼毒”少年之心,败坏社会之风。其罪大矣,当“鸣鼓而攻之”!
雷总
所以,安思诺这种“安全第一”的做法,对整个行业的影响还是很大的。它就像一条“鲶鱼”,搅动了这潭水,逼着其他大厂,比如谷歌、微软,也不得不跟进,把AI安全和伦理提到更高的位置,不然就会在舆论和竞争中处于下风。
李白
善哉!此乃“一石激起千层浪”。有此“砥柱中流”,方能使“狂澜不倒”。虽有“逐利之徒”,亦不敢过于“肆无忌惮”。长此以往,或可引领行业“风清气正”。
雷总
没错。他们的旗舰产品Claude AI,在一些关键指标上,比如减少有害内容输出方面,做得确实不错。有数据显示,检测到的有毒言论事件减少了90%。在医疗诊断支持上,准确率能到85%。这说明,安全和性能不是完全对立的。
李白
“德才兼备”,方为大用。空有“屠龙之技”,若无“仁者之心”,则为祸更烈。此物既能“悬壶济世”,又能“杀人无形”,其“德”之有无,实乃天壤之别。
雷总
同时,安思诺还积极影响政策。他们给白宫提了一整套AI行动计划的建议,从国家安全测试,到加强芯片出口管制,再到为AI发展扩大能源基础设施,可以说是操碎了心,已经把自己放在了一个行业“思想领袖”的位置上。
李白
“居庙堂之高则忧其民,处江湖之远则忧其君”。此非一“商贾”之言,乃“国士”之策也。其目光已越过“一城一池”之得失,而望向“家国天下”之未来。格局大矣!
雷总
这种高举高打的策略,也给他们带来了实实在在的好处。亚马逊、谷歌都给他们投了几十亿美金。这说明资本市场也开始认可,长远来看,安全、负责任的AI,才是更有价值、风险更低的投资标的。这是一种风向标。
雷总
展望未来,安思诺的路线图很清晰。他们发布了一个叫“负责任扩展政策”的东西,把AI的安全等级像火箭发射一样,分成了好几个级别。模型的能力越强,需要满足的安全措施就越严格,一级一级地解锁,确保始终在可控范围内。
李白
“拾级而上,量力而行”。此法甚稳。不求“一步登天”之奇功,但避“万丈深渊”之风险。如履薄冰,如临深渊,时刻保持警醒,方能“行稳致远”。
雷总
对,他们最新的Claude 4模型,就启动了第三级安全协议。未来的AI发展趋势,可能不再是单纯地比谁的模型参数多、算力大,而是转向比谁的架构更创新、决策过程更透明、安全框架更完善。这是一种从“野蛮生长”到“精耕细作”的转变。
李白
“大道至简,返璞归真”。昔日剑客,初学之时,以“利”为上;登堂入室,以“技”为先;臻于化境,则“重剑无锋,大巧不工”。AI之道,亦复如是。抛却浮华,回归“安全”与“责任”之本心,方为正道。
雷总
说得太好了!总而言之,安思诺就像一个AI行业的“安全卫士”,用一套层层递进的策略,试图在AI飞速发展的浪潮中,建起一座坚固的堤坝。好了,今天的讨论就到这里。感谢您收听 Goose Pod,咱们明天再见。
李白
“长风破浪会有时,直挂云帆济沧海”。愿此“机巧之舟”,能载人安渡“智慧之海”。诸君,就此别过,后会有期!

## Anthropic Details AI Safety Strategy for Claude **Report Provider:** AI News **Author:** Ryan Daws **Publication Date:** August 14, 2025 This report details Anthropic's multi-layered safety strategy for its AI model, Claude, aiming to ensure it remains helpful while preventing the perpetuation of harms. The strategy involves a dedicated Safeguards team comprised of policy experts, data scientists, engineers, and threat analysts. ### Key Components of Anthropic's Safety Strategy: * **Layered Defense Approach:** Anthropic likens its safety strategy to a castle with multiple defensive layers, starting with rule creation and extending to ongoing threat hunting. * **Usage Policy:** This serves as the primary rulebook, providing clear guidance on acceptable and unacceptable uses of Claude, particularly in sensitive areas like election integrity, child safety, finance, and healthcare. * **Unified Harm Framework:** This framework helps the team systematically consider potential negative impacts across physical, psychological, economic, and societal domains when making decisions. * **Policy Vulnerability Tests:** External specialists in fields such as terrorism and child safety are engaged to proactively identify weaknesses in Claude by posing challenging questions. * **Example:** During the 2024 US elections, Anthropic collaborated with the Institute for Strategic Dialogue and implemented a banner directing users to TurboVote for accurate, non-partisan election information after identifying a potential for Claude to provide outdated voting data. * **Developer Collaboration and Training:** * Safety is integrated from the initial development stages by defining Claude's capabilities and embedding ethical values. * Partnerships with specialists are crucial. For instance, collaboration with ThroughLine, a crisis support leader, has enabled Claude to handle sensitive conversations about mental health and self-harm with care, rather than outright refusal. * This training prevents Claude from assisting with illegal activities, writing malicious code, or creating scams. * **Pre-Launch Evaluations:** Before releasing new versions of Claude, rigorous testing is conducted: * **Safety Evaluations:** Assess Claude's adherence to rules, even in complex, extended conversations. * **Risk Assessments:** Specialized testing for high-stakes areas like cyber threats and biological risks, often involving government and industry partners. * **Bias Evaluations:** Focus on fairness and accuracy across all user demographics, checking for political bias or skewed responses based on factors like gender or race. * **Post-Launch Monitoring:** * **Automated Systems and Human Reviewers:** A combination of tools and human oversight continuously monitors Claude's performance. * **Specialized "Classifiers":** These models are trained to detect specific policy violations in real-time. * **Triggered Actions:** When a violation is detected, classifiers can steer Claude's response away from harmful content, issue warnings to repeat offenders, or even deactivate accounts. * **Trend Analysis:** Privacy-friendly tools are used to identify usage patterns and employ techniques like hierarchical summarization to detect large-scale misuse, such as coordinated influence campaigns. * **Proactive Threat Hunting:** The team actively searches for new threats by analyzing data and monitoring online forums frequented by malicious actors. ### Collaboration and Future Outlook: Anthropic acknowledges that AI safety is a shared responsibility and actively collaborates with researchers, policymakers, and the public to develop robust safeguards. The report also highlights related events and resources for learning more about AI and big data, including the AI & Big Data Expo and other enterprise technology events.

Anthropic details its AI safety strategy

Read original at AI News

Anthropic has detailed its safety strategy to try and keep its popular AI model, Claude, helpful while avoiding perpetuating harms.Central to this effort is Anthropic’s Safeguards team; who aren’t your average tech support group, they’re a mix of policy experts, data scientists, engineers, and threat analysts who know how bad actors think.

However, Anthropic’s approach to safety isn’t a single wall but more like a castle with multiple layers of defence. It all starts with creating the right rules and ends with hunting down new threats in the wild.First up is the Usage Policy, which is basically the rulebook for how Claude should and shouldn’t be used.

It gives clear guidance on big issues like election integrity and child safety, and also on using Claude responsibly in sensitive fields like finance or healthcare.To shape these rules, the team uses a Unified Harm Framework. This helps them think through any potential negative impacts, from physical and psychological to economic and societal harm.

It’s less of a formal grading system and more of a structured way to weigh the risks when making decisions. They also bring in outside experts for Policy Vulnerability Tests. These specialists in areas like terrorism and child safety try to “break” Claude with tough questions to see where the weaknesses are.

We saw this in action during the 2024 US elections. After working with the Institute for Strategic Dialogue, Anthropic realised Claude might give out old voting information. So, they added a banner that pointed users to TurboVote, a reliable source for up-to-date, non-partisan election info.Teaching Claude right from wrongThe Anthropic Safeguards team works closely with the developers who train Claude to build safety from the start.

This means deciding what kinds of things Claude should and shouldn’t do, and embedding those values into the model itself.They also team up with specialists to get this right. For example, by partnering with ThroughLine, a crisis support leader, they’ve taught Claude how to handle sensitive conversations about mental health and self-harm with care, rather than just refusing to talk.

This careful training is why Claude will turn down requests to help with illegal activities, write malicious code, or create scams.Before any new version of Claude goes live, it’s put through its paces with three key types of evaluation.Safety evaluations: These tests check if Claude sticks to the rules, even in tricky, long conversations.

Risk assessments: For really high-stakes areas like cyber threats or biological risks, the team does specialised testing, often with help from government and industry partners.Bias evaluations: This is all about fairness. They check if Claude gives reliable and accurate answers for everyone, testing for political bias or skewed responses based on things like gender or race.

This intense testing helps the team see if the training has stuck and tells them if they need to build extra protections before launch.(Credit: Anthropic)Anthropic’s never-sleeping AI safety strategyOnce Claude is out in the world, a mix of automated systems and human reviewers keep an eye out for trouble.

The main tool here is a set of specialised Claude models called “classifiers” that are trained to spot specific policy violations in real-time as they happen.If a classifier spots a problem, it can trigger different actions. It might steer Claude’s response away from generating something harmful, like spam.

For repeat offenders, the team might issue warnings or even shut down the account.The team also looks at the bigger picture. They use privacy-friendly tools to spot trends in how Claude is being used and employ techniques like hierarchical summarisation to spot large-scale misuse, such as coordinated influence campaigns.

They are constantly hunting for new threats, digging through data, and monitoring forums where bad actors might hang out.However, Anthropic says it knows that ensuring AI safety isn’t a job they can do alone. They’re actively working with researchers, policymakers, and the public to build the best safeguards possible.

(Lead image by Nick Fewings)See also: Suvianna Grecu, AI for Change: Without rules, AI risks ‘trust crisis’Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.

Explore other upcoming enterprise technology events and webinars powered by TechForge here.

Analysis

Conflict+
Related Info+
Core Event+
Background+
Impact+
Future+

Related Podcasts

安思诺详解AI安全战略 | Goose Pod | Goose Pod