AI设计新型抗生素,对抗淋病和MRSA超级细菌

AI设计新型抗生素,对抗淋病和MRSA超级细菌

2025-08-16Technology
--:--
--:--
卿姐
早上好,韩纪飞,我是卿姐。欢迎收听专为您打造的 Goose Pod。今天是 8 月 17 日,星期日,早上 6 点。很高兴与您一同开启新的一天。
小撒
大家好,我是小撒!今天我们要聊一个非常酷的话题:AI 设计新型抗生素,对抗那些让我们头疼的超级细菌,比如淋病和 MRSA!听起来是不是有点科幻电影的感觉?
卿姐
确实很有未来感。就如同那句诗所说,“忽如一夜春风来,千树万树梨花开。”麻省理工学院的研究团队,正是利用生成式 AI 的力量,让全新的抗生素分子“凭空”诞生。
小撒
“凭空”诞生?这可不是变魔术吧!卿姐你快给我讲讲,AI 是怎么从零开始设计一个药的?它难道比药学家还懂化学吗?这简直就像是给AI一支笔,让它写一首全新的唐诗啊!
卿姐
你的比喻很生动。你可以想象,研究人员先给 AI “喂”了海量的“学习资料”——也就是成千上万种已知化合物的化学结构,以及它们对各种细菌的抑制效果数据。
小撒
哦,我明白了!这就是所谓的“深度学习”嘛!就像我准备考试,疯狂刷题库,刷得多了,自然就摸索出规律了。AI 就是在“刷”这些化学分子,看看哪个结构能克制哪个细菌。
卿姐
正是如此。AI 在学习了这些规律后,就能理解不同原子,比如碳、氧、氢、氮,如何组合成特定的分子结构,并对细菌产生影响。它不只是模仿,更是在此基础上进行创新。
小撒
所以它不只是一个“学霸”,还是一个“创造者”!它看的题库有多大?这次研究,AI 是不是把整个化学界的图书馆都给“啃”下来了?我猜数量肯定惊人。
卿姐
数量确实惊人。这次研究,AI 审视了高达 3600 万种化合物,其中甚至包括许多现实中还不存在,或者尚未被人类发现的分子。它在这个浩瀚的化学宇宙里探索。
小撒
三千六百万!我的天,这要是人工筛选,得筛选到什么时候去?这效率也太高了!所以,它最终找到了什么“宝藏”?是不是像大海捞针一样,找到了那几颗闪亮的珍珠?
卿姐
没错。通过两种不同的设计路径,AI 最终设计出了一些全新的分子结构。研究人员将其中最优的设计在实验室里制造出来,并成功发现了两种非常有潜力的新药,在小鼠实验中有效对抗了淋病和MRSA。
小撒
太棒了!这简直就是“科技改变命运”的现实版!麻省理工学院的詹姆斯·柯林斯教授自己都说,生成式AI能设计出全新的抗生素,这让他们非常兴奋,感觉像是在和超级细菌的“军备竞赛”中,我们人类终于有了新式武器!
卿姐
是的,他把这比作人类智慧与细菌基因之间的一场博弈。AI 能够让我们以更低成本、更高效率地创造新分子,极大地丰富我们的“武器库”,让我们在这场战斗中抢占先机。
卿姐
我想,要真正理解这项突破的意义,我们或许需要回顾一下人类与细菌那段漫长又曲折的“斗争史”。这不仅仅是科学的进步,更关乎无数生命的存续。一切都要从盘尼西林的发现说起。
小撒
啊哈,历史课时间到了!不过我喜欢!盘尼西林,就是青霉素嘛!我记得是弗莱明在 1928 年,因为一次意外的“疏忽”,发现霉菌能杀死细菌,从此开启了抗生素的“黄金时代”。
卿姐
是的,那是一个充满希望的时代。二战后,链霉素、四环素、万古霉素等多种抗生素相继被发现,许多曾经的绝症,比如肺结核,都变得可以治愈。人类一度以为我们已经永远战胜了细菌。
小撒
但是!我知道每个故事都有一个“但是”。细菌这个对手,可比我们想象的要“聪明”和“顽强”得多。它们可不会坐以待毙,而是会不断地“升级”自己的防御系统。是这样吧?
卿姐
完全正确。其实早在青霉素被广泛使用之前,科学家就已经发现了能让青霉素失效的“青霉素酶”。就像是你刚研发出一把新锁,结果发现小偷手里已经有了万能钥匙。细菌的进化速度非常惊人。
小撒
这场“猫鼠游戏”从一开始就没停过啊!我们开发新药,细菌就产生耐药性。我听说过一个词叫“超级细菌”,是不是就是在这场无休止的“军备竞赛”中诞生的终极“大反派”?
卿姐
可以这么理解。以 MRSA,也就是耐甲氧西林金黄色葡萄球菌为例。甲氧西林本是为对抗耐青霉素的细菌而开发的,但在 1959 年投入使用后不到三年,耐甲氧西林的菌株就出现了。
小撒
三年!这也太快了吧!这细菌的“学习能力”比我还强啊!它们是怎么做到这么快就产生耐药性的?是通过基因突变吗?就像电影里的超级英雄一样,突然觉醒了某种超能力?
卿姐
有自发的基因突变,但更可怕的是一种叫做“水平基因转移”的机制。细菌之间会互相“分享”耐药基因,就像学生考试时互相传纸条一样。这让耐药性可以像瘟疫一样在细菌群体中迅速传播。
小撒
哇,它们还有一个“耐药基因交流群”!这简直是作弊啊!而且我还听说,我们人类自己的一些行为,比如滥用抗生素,也给它们创造了绝佳的“练级”环境,是吗?
卿姐
是的,这是一个非常沉重的话题。全球生产的抗生素,只有不到一半用于人类医疗,大量的抗生素被用在了畜牧业和农业上,以促进动物生长和预防疾病。这种过度使用,无疑是筛选和催生超级细菌的温床。
小撒
这就好比,我们为了让鸡鸭鱼肉长得更快更好,结果却在无意中培养出了一支刀枪不入的“细菌大军”。这笔账算下来,怎么看都觉得得不偿失啊!问题是,我们的新药研发速度跟得上吗?
卿姐
这正是问题的核心。在辉煌的“黄金时代”之后,新型抗生素的发现速度显著放缓了。研发一种新药既耗时又耗力,成本极高,许多大型制药公司甚至纷纷退出了这个领域。我们的“武器库”更新得越来越慢。
小撒
所以我们现在面临的局面就是:一边是敌人(超级细菌)越来越强大,武器(耐药基因)越来越多;另一边是我们自己(人类)的新武器研发却陷入了瓶颈。这听起来,战况对我们很不利啊!
卿姐
情况确实非常严峻。科学家们甚至预测,如果找不到应对之策,到 2050 年,每年可能会有一千万人死于耐药菌感染,超过癌症。我们仿佛又将回到那个没有抗生素的黑暗时代。
小撒
一千万!这数字太可怕了!所以说,这次麻省理工学院用 AI 设计新药的成功,才显得如此重要和振奋人心。它可能就是打破这个僵局,引领我们走出困境的那道光!
卿姐
是的,它带来了新的希望。但就如同任何新生事物一样,AI 制药的道路也并非一片坦途。它同样面临着现实的挑战和深刻的困境,尤其是在商业和伦理层面。
小撒
哦?这里面还有什么“坑”吗?我这个学法的,对商业和伦理问题最敏感了。我的第一反应是:这药好是好,但它能赚钱吗?毕竟,制药公司不是慈善机构,得有利润才能持续研发啊。
卿姐
你正好说到了问题的关键。华威大学的克里斯·道森教授就提出了一个非常尖锐的经济学问题:“你要如何销售一种商业价值几乎为零的药物?”这是一个巨大的悖论。
小撒
等一下,我没听错吧?能对抗超级细菌的救命药,商业价值为零?这怎么可能!这应该是无价之宝才对啊!难道这里面有什么我没想到的逻辑?快给我解释一下。
卿姐
想象一下,如果我们真的研发出一种能杀死所有超级细菌的“终极抗生素”,为了保护它不那么快产生耐药性,我们会怎么做?我们会把它锁在保险柜里,只在最危急的时刻才拿出来用。
小撒
啊,我懂了!“好钢要用在刀刃上”。因为太珍贵了,所以要尽可能少地使用它,以延长它的“保质期”。但这样一来,它的销量就会非常非常低,制药公司就收不回那动辄数十亿的研发成本了!
卿姐
正是这个道理。高昂的研发成本和极低的预期回报,形成了一个“破碎的市场”。这导致许多制药公司宁愿去开发治疗慢性病,需要长期服用的药物,也不愿投资抗生素。这是一个系统性的经济困境。
小撒
这简直是个死循环!公共卫生急需新药,但市场机制却无法激励创新。有人提出,可以像对待“孤儿药”那样,给抗生素研发提供特殊的政策激励,比如延长市场独占期、税收抵免什么的,来打破这个僵局。
卿姐
这是一个非常有建设性的思路。通过政策干预,弥补市场失灵,让研发抗生素的企业也能获得合理的商业回报。除此之外,AI 制药本身也面临着一些技术和伦理上的挑战。
小撒
哦?技术上还有什么难题?我以为 AI 都那么厉害了,设计个分子还不是小菜一碟?伦理上又有什么可担心的?难道 AI 设计的药会“背叛”人类吗?哈哈!
卿姐
技术上的挑战在于,AI 设计出来的分子,在理论上很完美,但要在现实世界中合成出来,却可能非常困难。这次研究中,AI 设计了 80 种针对淋病的治疗方案,但最终只有两种被成功制造出来。
小撒
原来如此,“理想很丰满,现实很骨感”啊!AI 是个天才设计师,但我们还需要同样天才的“工匠”才能把图纸变成现实。那伦理上的问题呢?我还是很好奇。
卿姐
伦理上的讨论,更多是关于更前沿的,比如“分子去灭绝”技术。科学家们尝试复活古代生物基因来寻找新的抗生素。这就引出了关于生态影响、生物安全,甚至“扮演上帝”的深刻讨论。
卿姐
尽管存在这些挑战,但 AI 为药物研发带来的积极影响,已经是清晰可见的。它不仅关乎公共卫生,也对整个医药经济产生了深远的变革。我想,这大概就是科技赋予时代的双重红利。
小撒
双重红利!这个词我喜欢。咱们先说经济账。传统的药物发现,听说成本高达 20 亿美元,光是初期探索就要四到六年。这简直是在“烧钱”。AI 是不是能让这个过程变得更便宜、更高效?
卿姐
是的,这正是 AI 的巨大优势。它通过优化分子设计、提高预测准确性,极大地缩短了研发时间线,并降低了成本。有公司报告称,与传统方法相比,AI 能将临床前开发的成本降低 50% 到 75%。
小撒
降低一半以上!这可不是个小数目。省下来的钱和时间,又可以投入到更多新药的研发中去,形成一个良性循环。现在是不是有很多公司都在布局这个赛道?我感觉这会是一个新的投资热点。
卿姐
没错。截至 2023 年,全球对 AI 药物发现公司的投资已达到约 138 亿美元,有超过 160 家公司活跃在这个领域。这说明资本市场非常看好这项技术的潜力。
小撒
资本的嗅觉总是最灵敏的。那对我们普通人来说,对公共卫生的影响呢?是不是意味着我们能更快地用上更安全、更有效的新药?这才是我们最关心的。
卿姐
这是必然的。最近的研究表明,由 AI 辅助设计的药物分子,在 I 期临床试验中的成功率高达 80% 到 90%,而传统药物的历史平均成功率只有 40% 到 65%。
小撒
哇!成功率翻了一倍!这意味着更少的失败尝试,也意味着药物能更快地从实验室走向药店的货架。对于那些急需治疗的病人来说,时间就是生命。AI 真的是在和死神赛跑啊!
卿姐
你说得非常对。比如 Exscientia 公司利用 AI 开发的针对强迫症的药物,从初步筛选到临床前开发,只用了不到一年的时间。这在过去是难以想象的。AI 正在加速填补那些未被满足的医疗需求。
卿姐
展望未来,AI 在抗生素发现领域的潜力,才刚刚开始被挖掘。它为我们打开了一扇窗,让我们得以窥见一个全新的、充满无限可能的药物研发世界。这或许就是柯林斯教授所说的“第二个黄金时代”的序幕。
小撒
第二个黄金时代!这个说法太让人激动了!除了这次发现的两种新药,AI 还找到了其他“候选者”吗?它的“人才库”里,是不是还有成千上万个潜力股,等着我们去发掘?
卿姐
确实如此。在另一项研究中,AI 识别出了超过一万两千个具有潜在抗菌活性的分子。这些被称为“古菌素”的化合物,其作用方式似乎与现有抗生素完全不同,这意味着它们可能对耐药菌有奇效。
小撒
一万多个!这简直是发现了一个全新的“抗生素宝库”啊!而且作用方式还不一样,这不就意味着,就算细菌对老药耐药了,碰到这些新来的“天降神兵”,也得束手就擒?
卿姐
是的,发现全新的作用机制至关重要。比如之前 AI 发现的另一种名为 Halicin 的强效抗生素,它通过破坏细菌维持细胞膜电化学梯度的能力来杀死细菌,这种独特的机制让耐药菌株难以防御。
小撒
我明白了,这就像是武林高手过招,以前的抗生素都是攻击同一个罩门,细菌练久了就有了防备。现在 AI 找到了一个全新的、谁也不知道的“死穴”,一击致命!这才是真正的“降维打击”!
卿姐
说得很好。总而言之,AI 设计的新型抗生素为我们对抗超级细菌带来了曙光。尽管从实验室到临床应用还有很长的路要走,但这项技术无疑为我们增添了战胜耐药性的信心和希望。
小撒
没错!今天的讨论就到这里。感谢您收听 Goose Pod,我是小撒。让我们一起期待AI带来更多的医学奇迹!明天见!

## AI Designs Novel Antibiotics to Combat Drug-Resistant Superbugs This news report from the **BBC**, authored by **James Gallagher**, details a groundbreaking advancement in antibiotic discovery, where artificial intelligence (AI) has successfully designed two new potential antibiotic compounds. These compounds have demonstrated the ability to kill drug-resistant strains of **gonorrhoea** and **MRSA (methicillin-resistant Staphylococcus aureus)** in laboratory and animal tests. ### Key Findings and Conclusions: * **AI-Designed Antibiotics:** Researchers at the **Massachusetts Institute of Technology (MIT)** have utilized generative AI to design entirely new antibiotic molecules, atom-by-atom. This marks a significant step beyond previous AI applications that focused on identifying existing chemicals with antibiotic potential. * **Effectiveness Against Superbugs:** The two AI-designed compounds have shown efficacy in killing drug-resistant gonorrhoea and MRSA in laboratory settings and in infected mice. * **Potential for a "Second Golden Age":** The MIT team believes AI could usher in a new era of antibiotic discovery, addressing the critical shortage of new drugs to combat rising antibiotic resistance. * **Addressing a Global Health Crisis:** Antibiotic-resistant infections are a growing concern, causing over a million deaths annually. The overuse of antibiotics has accelerated bacterial evolution, making existing treatments less effective. ### Key Statistics and Metrics: * **Interrogated Compounds:** The AI was trained on and interrogated **36 million compounds**, including those that do not yet exist. * **Compound Size:** The AI identified promising starting points by searching through a library of chemical fragments ranging from **eight to 19 atoms** in size. * **Manufacturing Challenges:** Out of the top 80 theoretical gonorrhoea treatments designed by AI, only **two** were successfully synthesized into actual medicines, highlighting manufacturing challenges. ### Important Recommendations and Future Steps: * **Further Refinement and Clinical Trials:** The newly designed compounds are not yet ready for prescription. They require an estimated **one to two years** of further refinement before they can enter clinical trials in humans. * **Improved AI Models:** There is a need for better AI models that can more accurately predict drug effectiveness within the human body, moving beyond laboratory performance. ### Significant Trends and Changes: * **Shift in AI Application:** The research signifies a shift from AI being used to screen existing chemicals to AI being used for the *de novo* design of novel drug molecules. * **Accelerated Discovery Process:** AI has the potential to significantly speed up the drug discovery process, enabling the creation of new molecules "cheaply and quickly." ### Notable Risks and Concerns: * **Long and Expensive Testing:** Despite AI's capabilities, the process of testing for safety and efficacy in humans remains long, expensive, and without a guarantee of success. * **Manufacturing Feasibility:** The complexity of AI-designed molecules can pose challenges in their synthesis and manufacturing. * **Economic Viability:** A significant economic concern is the profitability of new antibiotics. To preserve their effectiveness, these drugs should ideally be used sparingly, making it difficult for pharmaceutical companies to recoup development costs. ### Context and Expert Opinions: * **Prof James Collins (MIT):** Emphasizes AI's ability to generate novel molecules quickly and cheaply, bolstering the fight against superbugs. * **Dr Andrew Edwards (Fleming Initiative and Imperial College London):** Praises the work as "very significant" with "enormous potential" but stresses the continued need for rigorous safety and efficacy testing. * **Prof Chris Dowson (University of Warwick):** Describes the study as "cool" and a "significant step forward," but also points to the economic disincentive for developing new antibiotics. This research represents a significant leap forward in the battle against antibiotic resistance, showcasing the transformative potential of AI in drug discovery. However, the path from AI design to patient prescription remains a complex and challenging one, requiring substantial further research and development.

AI designs new superbug-killing antibiotics for gonorrhoea and MRSA

Read original at BBC

Getty ImagesArtificial intelligence has invented two new potential antibiotics that could kill drug-resistant gonorrhoea and MRSA, researchers have revealed.The drugs were designed atom-by-atom by the AI and killed the superbugs in laboratory and animal tests.The two compounds still need years of refinement and clinical trials before they could be prescribed.

But the Massachusetts Institute of Technology (MIT) team behind it say AI could start a "second golden age" in antibiotic discovery.Antibiotics kill bacteria, but infections that resist treatment are now causing more than a million deaths a year.Overusing antibiotics has helped bacteria evolve to dodge the drugs' effects, and there has been a shortage of new antibiotics for decades.

Researchers have previously used AI to trawl through thousands of known chemicals in an attempt to identify ones with potential to become new antibiotics.Now, the MIT team have gone one step further by using generative AI to design antibiotics in the first place for the sexually transmitted infection gonorrhoea and for potentially-deadly MRSA (methicillin-resistant Staphylococcus aureus).

Their study, published in the journal Cell, interrogated 36 million compounds including those that either do not exist or have not yet been discovered.Scientists trained the AI by giving it the chemical structure of known compounds alongside data on whether they slow the growth of different species of bacteria.

The AI then learns how bacteria are affected by different molecular structures, built of atoms such as carbon, oxygen, hydrogen and nitrogen.Two approaches were then tried to design new antibiotics with AI. The first identified a promising starting point by searching through a library of millions of chemical fragments, eight to 19 atoms in size, and built from there.

The second gave the AI free rein from the start.The design process also weeded out anything that looked too similar to current antibiotics. It also tried to ensure they were inventing medicines rather than soap and to filter out anything predicted to be toxic to humans.Scientists used AI to create antibiotics for gonorrhoea and MRSA, a type of bacteria that lives harmlessly on the skin but can cause a serious infection if it enters the body.

Once manufactured, the leading designs were tested on bacteria in the lab and on infected mice, resulting in two new potential drugs.MITProf James Collins, one of the researchers at MIT"We're excited because we show that generative AI can be used to design completely new antibiotics," Prof James Collins, from MIT, tells the BBC."

AI can enable us to come up with molecules, cheaply and quickly and in this way, expand our arsenal, and really give us a leg up in the battle of our wits against the genes of superbugs."However, they are not ready for clinical trials and the drugs will require refinement – estimated to take another one to two year's work – before the long process of testing them in people could begin.

Dr Andrew Edwards, from the Fleming Initiative and Imperial College London, said the work was "very significant" with "enormous potential" because it "demonstrates a novel approach to identifying new antibiotics".But he added: "While AI promises to dramatically improve drug discovery and development, we still need to do the hard yards when it comes to testing safety and efficacy."

That can be a long and expensive process with no guarantee that the experimental medicines will be prescribed to patients at the end.Some are calling for AI drug discovery more broadly to improve. Prof Collins says "we need better models" that move beyond how well the drugs perform in the laboratory to ones that are a better predictor of their effectiveness in the body.

There is also an issue with how challenging the AI-designs are to manufacture. Of the top 80 gonorrhoea treatments designed in theory, only two were synthesised to create medicines.Prof Chris Dowson, at the University of Warwick, said the study was "cool" and showed AI was a "significant step forward as a tool for antibiotic discovery to mitigate against the emergence of resistance".

However, he explains, there is also an economic problem factoring into drug-resistant infections - "how do you make drugs that have no commercial value?"If a new antibiotic was invented, then ideally you would use it as little as possible to preserve its effectiveness, making it hard for anyone to turn a profit.

Analysis

Conflict+
Related Info+
Core Event+
Background+
Impact+
Future+

Related Podcasts