人工智能研发新型抗生素,专克淋病和MRSA超级细菌

人工智能研发新型抗生素,专克淋病和MRSA超级细菌

2025-08-16Technology
--:--
--:--
小撒
早上好,老王!我是小撒,欢迎收听专为您打造的 Goose Pod。今天是8月17日,星期日,早上7点。今天我们请来了一位穿越时空的嘉宾,准备好大开眼界了吗?
诗仙李白
幸会。吾乃李白,长安酒徒,天子呼来不上船,只愿与君共此晨。今朝有何奇闻,竟扰我清梦?
小撒
哎呀,李白先生,这事儿可比任何神话都精彩!麻省理工学院的科学家们,请了一位“人工智能神算子”,从无到有,设计出了两种全新的“神药”,专门对付那些让现代医生都头疼的超级细菌——淋病和MRSA!
诗仙李白
哦?竟有此等“机关之术”?能凭空炼制丹药,伏魔降妖?此非鬼斧神工,乃是天道造化了。这“超级细菌”,又是何方妖孽,竟如此猖獗?
小撒
您说的太对了,就是“妖孽”!这些细菌啊,对我们现在的抗生素刀枪不入,每年导致上百万人死亡。但现在,AI通过分析三千六百万种化合物的结构,注意,是三千六百万!从中创造出了全新的分子结构,就像是给孙悟空量身定做了一根金箍棒!
诗仙李白
三千六百万…此数浩如烟海,人力岂能穷尽?此“神算子”竟能遍览无遗,而后“匠心独运,妙手偶得”,炼成这降魔神兵。善哉,善哉!不知此神兵威力几何?
小撒
威力?在实验室和小鼠身上,那效果是立竿见影,所向披靡!项目负责人詹姆斯·柯林斯教授兴奋地说,这就像开启了抗生素发现的“第二个黄金时代”,能让我们在和超级细菌的斗智斗勇中,占尽先机!便宜、快速地造出新武器!
诗仙李白
“黄金时代”!好一个黄金时代!想我大唐盛世,亦是诗歌之黄金时代。此番科技昌明,竟能与我大唐文采风流相提并论,快哉!只是,此等仙丹,是否会涉及“经济分配”之俗务?莫要最终又是王公贵胄的囊中之物。
小撒
哎,您看问题就是深刻!这确实是个问题。新技术虽好,但如何让它普惠天下,而不是变成少数人的专利,这“经济分配”的学问,可比研发本身复杂多了。我们希望能像您的诗一样,流传千古,人人可诵,而不是锁在深宫里。
诗仙李白
然也。“安得广厦千万间,大庇天下寒士俱欢颜”。此药亦然,当如春风化雨,遍洒人间,而非奇货可居。若只为利,纵有屠龙之术,又有何益?
小撒
说得太好了!科技的终极目标,就该是“大庇天下俱欢颜”。不过,要理解为什么这个AI“神算子”如此重要,咱们得先回头看看,人类和细菌这场旷日持久的战争,是怎么打到今天这个地步的。
小撒
想当年,上世纪四十年代,我们人类偶然间发现了盘尼西林,也就是青霉素,那简直就像是得到了一把神器!细菌感染,以前可是不治之症,突然间药到病除。那段时期,新抗生素层出不穷,被称作抗生素的“黄金时代”,人类意气风发啊!
诗仙李白
嗯,犹如昔日名将得宝剑,初出鞘时,斩将夺旗,所向披靡。然利剑久用,亦会卷刃;敌军久战,亦会识破招数。这病菌,莫非也懂得“兵法”?
小撒
何止是懂兵法,它们简直是兵法大师!我们这边刚用上青霉素,那边能分解青霉素的细菌就出现了。我们开发出甲氧西林来对付它们,结果不到三年,耐甲氧西林的“超级细菌”MRSA就横空出世。就像一场永无休止的军备竞赛。
诗仙李白
道高一尺,魔高一丈。此乃天地至理。看来这微小生灵,亦有其求生之道,不断演化,以抗天敌。人类自诩万物之灵,在这场“微观战事”中,却似乎屡屡陷入被动。
小撒
可不是嘛!更糟糕的是,我们这边的新武器研发速度,越来越跟不上了。制药公司觉得研发抗生素投入大、回报低,纷纷撤退。您想啊,一个治疗慢性病的药,病人得天天吃,而抗生素吃几天就好了,哪个赚钱?资本的逻辑有时候就是这么残酷。
诗仙李白
哼,逐利之辈,只见眼前之蝇头,不见长远之大患。此举无异于自毁长城。待到病魔肆虐,无药可医之时,纵有金山银山,又岂能换回一命?“千金散尽还复来”,生命一去不复返啊!
小撒
正是如此!所以我们陷入了一个困境:一方面是细菌的耐药性越来越强,出现了对多种药物都耐药的“超级细菌”;另一方面,我们的“弹药库”却几十年没有更新了。科学家们甚至悲观地预测,再这样下去,我们的后代可能要退回到没有抗生素的黑暗时代。
诗仙李白
“前不见古人,后不见来者,念天地之悠悠,独怆然而涕下”。此等悲怆,吾能体会。难道我辈只能坐视“黑暗时代”重临,束手无策,任由病魔宰割?
小撒
当然不!这也是为什么这次AI的突破如此振奋人心。它打破了这个僵局。传统方法就像是在黑暗的森林里一棵一棵树地找能做药的材料,而AI,它直接给我们画出了一张藏宝图,甚至告诉我们宝藏长什么样,该如何打造!
诗仙李白
原来如此。此“神算子”非是寻宝,乃是创宝!它能洞悉万物生克之理,于无穷变化之中,推演出那“唯一解”。这已非凡人智慧,近乎于“道”了。
小撒
没错!它学习了现有药物和细菌相互作用的原理,然后开始“创作”。更绝的是,它还会刻意避开现有抗生素的结构,保证设计出来的是全新的武器,让细菌一时间摸不着头脑,无法防御。这简直就是降维打击!
诗仙李白
“文章本天成,妙手偶得之”。此AI之“创作”,亦是此理。它勘破了细菌的“命门”,而后聚天地之灵气,凝成一柄无形之剑,直刺要害。此等智慧,令人敬畏。
小撒
但是,李白先生,这“神剑”虽好,铸造它的成本和背后的商业逻辑,却是个大难题。您知道吗,传统上研发一款新药,动辄花费数十亿美元,耗时十年以上。而且失败率极高,可以说是九死一生。
诗仙李白
哦?铸一柄救世之剑,竟需如此靡费?“十年磨一剑”,本是佳话,但若十有九败,这代价未免过于沉重。难怪那些商贾要望而却步了。
小撒
正是!更矛盾的是抗生素的商业模式。一个好抗生素,为了防止细菌产生耐药性,医生会严格限制使用,只在最关键的时候用。这就导致它的销量上不去,药厂很难收回成本。这就好比,你花大价钱造出了“核武器”,但规定它只能用作威慑,不能轻易发射。
诗仙李白
此话颇为荒诞。药者,所以救人也。竟因其效用卓著,反而使其“怀才不遇”,不能广济于民。天下岂有此理?此非药之过,乃人之过,是市场之过了。
小撒
您一语中的!这就是所谓的“市场失灵”。公共卫生需求和商业利益之间,存在着巨大的鸿沟。所以很多专家呼吁,不能完全靠市场来激励抗生素研发,政府应该出手,像对待国防一样,把抗生素研发当作战略储备来支持。
诗仙李白
“国之大事,在祀与戎”。这抗击病魔,便是“戎”事,是护国安民之战。朝廷理应高瞻远瞩,拨付钱粮,招募天下英才,铸造神兵利器,以备不时之需。岂能将此等大事,尽委于商贾之手?
小撒
说得对!而且还有伦理上的困境。比如这次AI设计的药物,理论上设计出了80多种,但最终只成功合成了两种。这背后的技术门槛和资源消耗依然巨大。我们是不是应该集中资源,去攻克那些威胁最大的细菌?这又该由谁来决定呢?
诗仙李白
这确是两难。“均田免粮”乃大同之想,然资源有限,必有先后缓急之分。此事当由大智慧者,以苍生福祉为念,公心裁断。切不可因一己之私,或地域之别,而有所偏废。
小撒
好在,AI的出现,正在让这个天平慢慢向好的方向倾斜。它带来的最大冲击,就是“降本增效”。以前大海捞针,现在是精准制导。根据一些公司的报告,AI能把临床前开发的成本降低50%到75%,时间也大大缩短。
诗仙李白
能缩减一半开销?此乃天大的福音!如此,则铸剑之门槛大降,更多有识之士可投身其中,共襄盛举。昔日王谢堂前燕,或可“飞入寻常百姓家”。
小撒
没错!更重要的是,AI设计的药物分子,在进入人体临床试验的初期阶段,成功率高达80-90%,而传统药物只有40-65%。这意味着我们能少走很多弯路,更快地把有效的药物送到病人手中。这对公共卫生来说,意义非凡。
诗仙李白
成功率竟能倍增!这不啻于让良医配上了神兵,让战场上的将军拿到了必胜的锦囊。如此一来,拯救万民于水火,便不再是遥不可及的梦想。
小撒
正是如此。全球已有超过160家公司在利用AI进行药物研发,大约15种由AI设计的候选药物正在进行临床试验。这股浪潮已经形成了。它不仅是在解决抗生素的问题,更是在改变整个制药行业的生态。
诗仙李白
“忽如一夜春风来,千树万树梨花开”。此等景象,诚可待也。看来这“神算子”,不仅是仙丹的创造者,更是引领一场变革的先锋。它为陷于困境的医药界,吹来了一股强劲的东风。
小撒
展望未来,这扇门一旦打开,里面的风景只会越来越精彩。除了这次的成果,之前AI还发现了一种名为“Halicin”的强力抗生素,它的作用机制非常独特,能破坏细菌的细胞膜,让细菌很难产生耐药性。
诗仙李白
哦?直捣黄龙,攻其不备!此法甚好。非是与其缠斗,而是直取其性命根基。此“Halicin”之名,颇有雷霆万钧之势。
小撒
还有呢,最近AI又从古老的微生物中,识别出了一万两千多种可能具有抗菌活性的分子,叫做“archaeasins”。这些都是我们以前从未涉足过的宝库。AI就像一个超级考古学家,在生命的故纸堆里,发掘被遗忘的宝藏。
诗仙李白
“考古”之说,妙极!“温故而知新”,古人之智慧,亦可启迪今人。这沉睡亿万年的生灵,其体内竟也藏着克敌制胜的玄机。天地造化,真是无穷无尽。
小撒
所以,虽然我们面前还有很多挑战,比如如何将这些发现真正转化成安全有效的药物,还有漫长的临床试验之路要走。但是,有了AI这个强大的盟友,我们对抗超级细菌的未来,无疑是光明了许多。
小撒
好了,总结一下今天的内容:人工智能正以前所未有的方式,设计全新的抗生素来对抗超级细菌,为我们打开了一扇希望之窗。虽然前路漫漫,但科技的火种已经点燃。我是小撒。
诗仙李白
“长风破浪会有时,直挂云帆济沧海”。有此等神兵相助,何愁妖氛不破,天下不清?吾乃李白。感谢老王收听 Goose Pod,我们明天再会。

## AI Designs Novel Antibiotics to Combat Drug-Resistant Superbugs This news report from the **BBC**, authored by **James Gallagher**, details a groundbreaking advancement in antibiotic discovery, where artificial intelligence (AI) has successfully designed two new potential antibiotic compounds. These compounds have demonstrated the ability to kill drug-resistant strains of **gonorrhoea** and **MRSA (methicillin-resistant Staphylococcus aureus)** in laboratory and animal tests. ### Key Findings and Conclusions: * **AI-Designed Antibiotics:** Researchers at the **Massachusetts Institute of Technology (MIT)** have utilized generative AI to design entirely new antibiotic molecules, atom-by-atom. This marks a significant step beyond previous AI applications that focused on identifying existing chemicals with antibiotic potential. * **Effectiveness Against Superbugs:** The two AI-designed compounds have shown efficacy in killing drug-resistant gonorrhoea and MRSA in laboratory settings and in infected mice. * **Potential for a "Second Golden Age":** The MIT team believes AI could usher in a new era of antibiotic discovery, addressing the critical shortage of new drugs to combat rising antibiotic resistance. * **Addressing a Global Health Crisis:** Antibiotic-resistant infections are a growing concern, causing over a million deaths annually. The overuse of antibiotics has accelerated bacterial evolution, making existing treatments less effective. ### Key Statistics and Metrics: * **Interrogated Compounds:** The AI was trained on and interrogated **36 million compounds**, including those that do not yet exist. * **Compound Size:** The AI identified promising starting points by searching through a library of chemical fragments ranging from **eight to 19 atoms** in size. * **Manufacturing Challenges:** Out of the top 80 theoretical gonorrhoea treatments designed by AI, only **two** were successfully synthesized into actual medicines, highlighting manufacturing challenges. ### Important Recommendations and Future Steps: * **Further Refinement and Clinical Trials:** The newly designed compounds are not yet ready for prescription. They require an estimated **one to two years** of further refinement before they can enter clinical trials in humans. * **Improved AI Models:** There is a need for better AI models that can more accurately predict drug effectiveness within the human body, moving beyond laboratory performance. ### Significant Trends and Changes: * **Shift in AI Application:** The research signifies a shift from AI being used to screen existing chemicals to AI being used for the *de novo* design of novel drug molecules. * **Accelerated Discovery Process:** AI has the potential to significantly speed up the drug discovery process, enabling the creation of new molecules "cheaply and quickly." ### Notable Risks and Concerns: * **Long and Expensive Testing:** Despite AI's capabilities, the process of testing for safety and efficacy in humans remains long, expensive, and without a guarantee of success. * **Manufacturing Feasibility:** The complexity of AI-designed molecules can pose challenges in their synthesis and manufacturing. * **Economic Viability:** A significant economic concern is the profitability of new antibiotics. To preserve their effectiveness, these drugs should ideally be used sparingly, making it difficult for pharmaceutical companies to recoup development costs. ### Context and Expert Opinions: * **Prof James Collins (MIT):** Emphasizes AI's ability to generate novel molecules quickly and cheaply, bolstering the fight against superbugs. * **Dr Andrew Edwards (Fleming Initiative and Imperial College London):** Praises the work as "very significant" with "enormous potential" but stresses the continued need for rigorous safety and efficacy testing. * **Prof Chris Dowson (University of Warwick):** Describes the study as "cool" and a "significant step forward," but also points to the economic disincentive for developing new antibiotics. This research represents a significant leap forward in the battle against antibiotic resistance, showcasing the transformative potential of AI in drug discovery. However, the path from AI design to patient prescription remains a complex and challenging one, requiring substantial further research and development.

AI designs new superbug-killing antibiotics for gonorrhoea and MRSA

Read original at BBC

Getty ImagesArtificial intelligence has invented two new potential antibiotics that could kill drug-resistant gonorrhoea and MRSA, researchers have revealed.The drugs were designed atom-by-atom by the AI and killed the superbugs in laboratory and animal tests.The two compounds still need years of refinement and clinical trials before they could be prescribed.

But the Massachusetts Institute of Technology (MIT) team behind it say AI could start a "second golden age" in antibiotic discovery.Antibiotics kill bacteria, but infections that resist treatment are now causing more than a million deaths a year.Overusing antibiotics has helped bacteria evolve to dodge the drugs' effects, and there has been a shortage of new antibiotics for decades.

Researchers have previously used AI to trawl through thousands of known chemicals in an attempt to identify ones with potential to become new antibiotics.Now, the MIT team have gone one step further by using generative AI to design antibiotics in the first place for the sexually transmitted infection gonorrhoea and for potentially-deadly MRSA (methicillin-resistant Staphylococcus aureus).

Their study, published in the journal Cell, interrogated 36 million compounds including those that either do not exist or have not yet been discovered.Scientists trained the AI by giving it the chemical structure of known compounds alongside data on whether they slow the growth of different species of bacteria.

The AI then learns how bacteria are affected by different molecular structures, built of atoms such as carbon, oxygen, hydrogen and nitrogen.Two approaches were then tried to design new antibiotics with AI. The first identified a promising starting point by searching through a library of millions of chemical fragments, eight to 19 atoms in size, and built from there.

The second gave the AI free rein from the start.The design process also weeded out anything that looked too similar to current antibiotics. It also tried to ensure they were inventing medicines rather than soap and to filter out anything predicted to be toxic to humans.Scientists used AI to create antibiotics for gonorrhoea and MRSA, a type of bacteria that lives harmlessly on the skin but can cause a serious infection if it enters the body.

Once manufactured, the leading designs were tested on bacteria in the lab and on infected mice, resulting in two new potential drugs.MITProf James Collins, one of the researchers at MIT"We're excited because we show that generative AI can be used to design completely new antibiotics," Prof James Collins, from MIT, tells the BBC."

AI can enable us to come up with molecules, cheaply and quickly and in this way, expand our arsenal, and really give us a leg up in the battle of our wits against the genes of superbugs."However, they are not ready for clinical trials and the drugs will require refinement – estimated to take another one to two year's work – before the long process of testing them in people could begin.

Dr Andrew Edwards, from the Fleming Initiative and Imperial College London, said the work was "very significant" with "enormous potential" because it "demonstrates a novel approach to identifying new antibiotics".But he added: "While AI promises to dramatically improve drug discovery and development, we still need to do the hard yards when it comes to testing safety and efficacy."

That can be a long and expensive process with no guarantee that the experimental medicines will be prescribed to patients at the end.Some are calling for AI drug discovery more broadly to improve. Prof Collins says "we need better models" that move beyond how well the drugs perform in the laboratory to ones that are a better predictor of their effectiveness in the body.

There is also an issue with how challenging the AI-designs are to manufacture. Of the top 80 gonorrhoea treatments designed in theory, only two were synthesised to create medicines.Prof Chris Dowson, at the University of Warwick, said the study was "cool" and showed AI was a "significant step forward as a tool for antibiotic discovery to mitigate against the emergence of resistance".

However, he explains, there is also an economic problem factoring into drug-resistant infections - "how do you make drugs that have no commercial value?"If a new antibiotic was invented, then ideally you would use it as little as possible to preserve its effectiveness, making it hard for anyone to turn a profit.

Analysis

Conflict+
Related Info+
Core Event+
Background+
Impact+
Future+

Related Podcasts