研究人员利用生成式AI设计杀灭耐药菌化合物

研究人员利用生成式AI设计杀灭耐药菌化合物

2025-08-23Technology
--:--
--:--
卿姐
早上好,韩纪飞,我是卿姐,这里是专为您打造的 Goose Pod。今天是8月24日,星期日。我想,此刻的相遇,大概就是“天涯若比邻”最好的诠释吧。
小撒
没错!我是小撒。今天我们要聊一个非常酷的话题:研究人员利用生成式AI,设计出了能够消灭超级耐药菌的新型化合物!听起来是不是像科幻电影里的情节?马上为您揭晓!
卿姐
我们这就开始吧。首先,让我们来描绘一下这幅画卷的核心。麻省理工学院,也就是我们熟知的MIT,那里的研究人员借助人工智能,设计出了全新的抗生素,这为我们对抗两种极为棘手的细菌感染带来了新的曙光。
小撒
是的,这两种细菌可不是善茬!一种是耐药性的淋病奈瑟菌,另一种是多重耐药性的金黄色葡萄球菌,也就是大名鼎鼎的MRSA。过去,医生们看到它们都头疼,因为很多常规抗生素都拿它们没办法。
卿姐
而这次的突破,就如同一位技艺高超的画师,不再局限于临摹旧作,而是开始创绘前所未有的杰作。研究团队利用生成式AI算法,凭空设计了超过3600万种可能的化合物,这在以前是无法想象的巨大化学空间。
小撒
3600万!这可比我认识的人多太多了。AI就像一个超级大脑,不知疲倦地进行排列组合,然后通过计算筛选出具有抗菌潜力的“种子选手”。关键是,这些被选中的化合物,在结构上和我们现有的任何抗生素都完全不同。
卿姐
是的,这意味着它们可能拥有全新的“武器”。研究发现,它们似乎是通过一种前所未有的新机制来发挥作用的,那就是直接破坏细菌的细胞膜。就如同攻城,不再是破解城门密码,而是直接瓦解城墙的根基。
小撒
这个比喻太妙了!等于说,细菌之前建立的那些防御工事,比如“我们已经认识你这种抗生素了,对你免疫”的盾牌,在新武器面前完全失效了。AI设计的“新兵”,根本不按套路出牌,直接釜底抽薪!
卿姐
正如项目负责人詹姆斯·柯林斯教授所说:“我们对这个项目为抗生素开发开辟的新可能性感到兴奋。我们的工作从药物设计的角度展示了人工智能的力量,并使我们能够利用以前无法进入的更广阔的化学空间。”
小撒
说白了,以前我们是在一个巨大的图书馆里找书,希望能找到一本有用的。现在有了AI,我们可以直接告诉它:“嘿,帮我写一本能解决问题的全新的书!” 这完全是两个维度的概念,从“寻找”变成了“创造”。
卿姐
这种从“寻找”到“创造”的飞跃,确实是这次研究最激动人心的地方。它不仅仅是找到了几种可能的新药,更重要的是,它为我们展示了一条全新的道路,一条可以主动设计、智能创造的药物研发之路。
小撒
没错!这就像给了我们一把万能钥匙,未来我们不仅能用它来开“耐药菌”这把锁,或许还能用它来解决其他更多棘手的医学难题。想想都觉得未来可期啊!这不仅仅是技术的胜利,更是想象力的胜利!
卿姐
说到耐药性,其实它并非新生事物。就如同光与影的相伴相生,自从我们拥有了抗菌药物这把利剑,微生物的抗争便从未停止。这段历史,充满了人类智慧与自然选择的博弈,读来令人感慨万千。
小撒
没错,这场“猫鼠游戏”的开端,可以追溯到上世纪初。1907年,保罗·埃尔利希在使用砷化物时就敏锐地发现,有些病原体居然能“硬扛”过去。这算是最早的耐药性警报了,可惜当时大家还没觉得这是个大问题。
卿姐
直到1929年,亚历山大·弗莱明偶然发现了青霉素,那真是一个划时代的瞬间,人类仿佛得到了一件“神器”。然而,智慧的火光总是相映成趣。仅仅在青霉素用于临床前的1940年,科学家就发现有细菌能产生分解它的酶。
小撒
这太戏剧性了!就像是我们刚造出一把削铁如泥的宝剑,结果发现对手家里已经备好了专门克制这把剑的盾牌。等到二战后青霉素广泛使用,耐药的金黄色葡萄球菌就开始在医院里“横行霸道”,成了当时的头号公敌。
卿姐
是的,那段时期,医学界的心情可以说是悲欣交集。一方面,新的抗生素如四环素、氯霉素不断被发现,我们手中的“武器库”日益丰富,这给了人们巨大的信心,觉得我们总能领先一步。这便是所谓的“乐观主义时期”。
小撒
这种乐观,有点像我小时候考试,总觉得下一题我肯定会。但现实是,细菌的“学习能力”超乎想象。到了60年代,日本科学家发现了一个惊人的事实:细菌之间居然可以互相“分享”耐药基因!这就像武侠小说里的传功,一个细菌练成了金刚不坏之身,还能把它传给同伴。
卿姐
这个发现,让人们的忧虑陡然加深。这种经由质粒进行的水平基因转移,意味着耐药性可以像瘟疫一样迅速扩散,不再是单个细菌的变异。人们开始用“超级细菌”这个词来形容那些刀枪不入的对手,对抗生素的未来蒙上了一层阴影。
小撒
而且我们人类自己还在“助纣为虐”。为了促进农场动物生长,我们把大量抗生素用在了农业上。这简直是给细菌开了一个24小时不间断的“耐药性强化训练营”,筛选出来的都是精英中的精英,然后这些精英细菌还可能从动物传播到人。
卿姐
“环境污染”这个词在当时被用来形容这种状况,我觉得非常贴切。我们为了眼前的便利,无形中污染了整个微生物环境。同时,新抗生素的发现速度却在减慢,一增一减之间,胜利的天平开始悄然倾斜。
小撒
是的,到了80年代,科学家们坐不住了。斯图尔特·利维博士召集了27个国家的科学家,共同发表声明,第一次把抗生素滥用定义为“全球公共卫生问题”。这就像是在一个吵闹的派对上,终于有人大喊一声:“各位,房子好像着火了!”
卿姐
那是一个重要的转折点,人们的意识开始觉醒。然而,行动的步伐总是迟缓的。直到90年代,随着艾滋病、耐药结核病等新兴传染病的出现,抗生素耐药性的问题才真正被推到聚光灯下,成为一个无法回避的全球性危机。
小撒
没错,各种报告开始用“抗生素的终结”、“危机”这样的词汇,气氛一下子紧张起来。MRSA,也就是耐甲氧西林金黄色葡萄球球菌,成了这个时代的标志性“超级大反派”,让全世界的医生都感到棘手。
卿姐
进入21世纪,这个问题被提升到了前所未有的高度。英国首席医疗官莎莉·戴维斯夫人甚至说,抗生素耐药性的重要性“与气候变化相当”。这是一个非常重的判断,意味着它关乎我们整个文明的未来。
小撒
确实,经济学家也来算账了。预测说,如果无动于衷,到2050年,全球每年可能有一千万人因此丧生,经济损失高达100万亿美元!这可不是危言耸听,这是我们可能要面对的“后抗生素时代”,一个我们早已不熟悉的可怕未来。
卿姐
所以,回顾这段历史,我们能清晰地看到一条轨迹:从最初的惊喜与乐观,到后来的警觉与忧虑,再到如今的深刻危机。这段历史告诉我们,与微生物的共存,需要的是智慧、审慎和长远的眼光。而AI的出现,正是在这个关键节点上,为我们带来了新的希望。
卿姐
AI的到来,确实像是在这场旷日持久的战争中,出现了一支装备精良的奇兵。它以前所未有的速度和效率,帮助我们筛选和设计药物。但正如凡事皆有两面,这支奇兵的出现,也引发了新的思考和挑战。
小撒
没错!AI现在是制药界的“当红炸子鸡”,像默克这样的大公司都在用它来寻找新的抗生素。大家都在说AI能加速创新,降低成本。听起来简直是完美解决方案,但现实往往比理想要复杂那么一点点。
卿姐
是的,其中一个核心的挑战在于,生命本身是极其复杂的。AI擅长处理的是有明确规则和大量数据的化学问题,比如分子结构。但生物学,尤其是涉及到蛋白质动态变化、基因表达这些层面,其中的幽微之处,远非现有模型能够完全捕捉。
小撒
这就好比,AI可以帮你设计出一把完美的钥匙,它的尺寸、齿形都精确无误。但它很难预测这把钥匙插进锁里之后,锁芯内部那些精密的弹簧和杠杆会如何联动,甚至会不会因为生锈而卡住。生物体的复杂性,就是那个生了锈的锁芯。
卿姐
这个比喻很生动。另一个巨大的障碍是数据问题。AI的成长需要“喂养”大量高质量的数据。但在药物研发领域,很多关键的数据并没有被系统地收集,或者没有以AI能够理解的方式进行编码。巧妇难为无米之炊,AI这个“巧妇”也面临着同样的困境。
小撒
是的,高质量的数据是AI的“粮食”。如果喂给它一堆“垃圾食品”,那它也只能给你一些不靠谱的建议。所以,尽管大家对AI寄予厚望,但到目前为止,我们还没看到由AI直接催生的新药像雨后春笋一样冒出来。它还处于一个非常早期的阶段。
卿姐
不过,我们确实看到了一些令人振奋的迹象。比如,在临床一期试验中,由AI辅助设计的药物分子的成功率,从过去的四到六成,提升到了八到九成。这说明在早期筛选阶段,AI的“眼光”确实更准,为我们节省了大量宝贵的时间和资源。
小撒
但是!这里有个转折,到了临床二期试验,成功率又回到了40%左右,和传统药物差不多。这再次说明,AI可以很好地解决化学层面的问题,但当药物进入人体,面对复杂的生物学挑战时,它的预测能力就受到了限制。
卿姐
所以,我们不能将AI视为一个无所不能的“魔法盒”。它更像一个能力超凡的助手,可以为科学家提供前所未有的工具和见解,但最终的判断和决策,仍然离不开人类的智慧和经验。它无法完全取代复杂的实验和临床验证。
小撒
完全同意。我们既要拥抱AI带来的巨大潜力,也要对它的局限性有清醒的认识。这场革命才刚刚开始,我们不能指望它一夜之间就解决所有问题。AI不是万灵药,而是一个强大的新盟友。我们需要学会如何与这位盟友更好地并肩作战。
卿姐
当我们谈论AI带来的影响时,它绝不仅仅局限于实验室的烧杯和试管。它所掀起的涟漪,正深刻地触及整个医药行业的经济格局,甚至我们每个人的健康福祉。这种影响,既宏大又深远。
小撒
没错!咱们来看点实在的,钱!有报告预测,生成式AI每年能为制药和医疗产品行业带来600亿到1100亿美元的经济价值。这个数字太惊人了,简直是给整个行业装上了一个超级涡轮增压引擎!
卿姐
这巨大的价值背后,是效率的飞跃。过去,一款新药从发现到上市,平均需要12到18年,花费超过26亿美元。而AI的介入,有望将药物研发的时间缩短整整4年,并节省高达260亿美元的费用。时间的缩短,对患者而言,就是生命的希望。
小撒
这太关键了!尤其是在临床试验阶段,AI简直是“效率大师”。它可以通过优化流程、自动起草文件,将试验成本降低高达70%,时间节省80%!这就像以前我们是靠步行送信,现在直接用上了即时通讯,速度和成本完全不是一个量级。
卿姐
除了研发,AI的影响也渗透到了生产和商业推广等环节。例如,在生产线上,它可以将设备效率提升10%到15%;在市场营销上,它可以让内容创作成本降低30%到50%,并且更精准地触达需要的人群。这是一种全方位的提质增效。
小撒
是的,而且现在几乎所有的制药公司都在投资AI,95%的公司都已经入局了。这已经不是“要不要做”的问题,而是“怎么做得更好”的问题。谁能更好地利用AI,谁就能在这场变革中抢占先机,赢得未来。
卿姐
这种变革,最终会惠及我们每一个人。当新药的研发速度加快,成本降低,我们就能更快地获得更有效的治疗方案。这不仅是经济数字的增长,更是对“健康中国”乃至全球公共卫生事业的巨大推动。科技的温度,正在于此。
小撒
说得太好了!AI正在重塑整个价值链,从一个想法的诞生,到一个药物最终送到患者手中,每一个环节都在被优化。这不仅仅是一场技术革命,更是一场关乎生命和健康的深刻变革。我们正处在这场变革的开端,见证着历史的发生。
卿姐
展望未来,AI这颗投入医药领域的石子,激起的将是层层叠叠、愈加壮阔的波澜。它不仅是当下的变革者,更是未来的塑造者。我们正站在一个新时代的门槛上,前方的景象,令人充满期待。
小撒
没错!就拿这次AI发现的新抗生素来说,下一步就是最关键的环节——人体临床试验。如果它能成功通过考验,那绝对是“游戏规则的改变者”,将为治疗那些刀枪不入的超级细菌提供全新的武器。想想都让人激动!
卿姐
是的,这不仅仅是一款新药的成败,更象征着一种新范式的成功。它将证明,AI驱动的药物发现不再是理论上的可能,而是切实可行的路径。这将极大地鼓舞更多的科研力量投入到这个充满希望的领域中来。
小撒
而且,AI的能力远不止于此。未来,它不仅能帮我们“发现”新药,还能在疾病的“预防”和“管理”上大显身手。比如,通过分析海量数据,更精准地预测耐药菌的出现和传播,帮助我们提前布局,防患于未然。
卿姐
诚然,AI的突破标志着医学创新的一个新纪元。但我们也应保持一份清醒与审慎。前路依然漫长,挑战与机遇并存。但无论如何,当智慧的算法与生命的密码相遇,我们有理由相信,一个更健康的未来,正在向我们走来。
卿姐
今天的讨论,如同一场思想的旅行,让我们看到了科技与生命交汇的奇妙图景。MIT的研究人员利用生成式AI,为我们对抗耐药菌的漫长战役,打开了一扇全新的大门。这就是科技给予我们的希望。
小撒
没错!今天的讨论就到这里了。感谢您的收听,韩纪飞。希望Goose Pod能为您带来新的一天的好心情!我们明天再见!

Here's a comprehensive summary of the MIT News article, "Using generative AI, researchers design compounds that can kill drug-resistant bacteria": ## MIT Researchers Leverage Generative AI to Design Novel Antibiotics Against Drug-Resistant Bacteria **News Title:** Using generative AI, researchers design compounds that can kill drug-resistant bacteria **Publisher:** MIT News **Author:** Anne Trafton | MIT News **Publication Date:** August 14, 2025 ### Executive Summary MIT researchers have successfully employed generative artificial intelligence (AI) to design novel antibiotic compounds capable of combating two challenging drug-resistant bacterial infections: **drug-resistant *Neisseria gonorrhoeae*** and **multi-drug-resistant *Staphylococcus aureus* (MRSA)**. This groundbreaking approach, detailed in the journal *Cell*, significantly expands the chemical space accessible for antibiotic discovery, moving beyond existing drug structures and exploring new mechanisms of action. The project has yielded promising drug candidates, **NG1** and **DN1**, which have demonstrated efficacy in laboratory tests and animal models, offering a new avenue to address the growing global crisis of antibiotic resistance. ### Key Findings and Conclusions * **AI-Driven Discovery of Novel Antibiotics:** Generative AI algorithms were used to design and computationally screen over **36 million** potential compounds. * **Structurally Distinct and Novel Mechanisms:** The identified top candidates are structurally different from existing antibiotics and appear to work by disrupting bacterial cell membranes through novel mechanisms. * **Targeting Difficult Infections:** The research successfully identified compounds effective against drug-resistant *Neisseria gonorrhoeae* and MRSA. * **Expanding Chemical Space:** This AI-driven approach allows researchers to explore and generate theoretical compounds that have never been synthesized or discovered before, vastly increasing the potential for finding new drugs. * **Potential for Broader Application:** The researchers aim to apply this methodology to identify and design compounds active against other bacterial pathogens, including *Mycobacterium tuberculosis* and *Pseudomonas aeruginosa*. ### Key Statistics and Metrics * **Total Compounds Designed:** Over **36 million** possible compounds were designed. * **Initial Fragment Library:** Approximately **45 million** known chemical fragments were assembled for the *N. gonorrhoeae* study. * **Fragments Screened for *N. gonorrhoeae*:** Nearly **4 million** fragments were initially screened. * **Candidates Filtered for *N. gonorrhoeae*:** Approximately **1 million** candidates remained after filtering for cytotoxicity, chemical liabilities, and similarity to existing antibiotics. * **Candidates Generated with F1 Fragment:** About **7 million** candidates containing the F1 fragment were generated. * **Compounds Selected for Synthesis (*N. gonorrhoeae*):** **80** compounds were selected for synthesis testing. * **Synthesized Compounds (*N. gonorrhoeae*):** Only **2** compounds could be synthesized, with **NG1** showing significant efficacy. * **Total Compounds Designed (Unconstrained):** Over **29 million** compounds were generated in the unconstrained design phase for *S. aureus*. * **Candidates Filtered for *S. aureus*:** Approximately **90** compounds were narrowed down. * **Synthesized and Tested Compounds (*S. aureus*):** **22** molecules were synthesized and tested. * **Compounds with Strong Activity (*S. aureus*):** **Six** molecules showed strong antibacterial activity. * **Global Impact of Drug-Resistant Infections:** Estimated to cause nearly **5 million** deaths per year. ### Important Recommendations and Future Directions * **Further Preclinical Development:** Phare Bio, a collaborator, is working on modifying NG1 and DN1 for further preclinical testing and advancing the best candidates through medicinal chemistry. * **Application to Other Pathogens:** The developed AI platforms will be applied to other significant bacterial pathogens like *Mycobacterium tuberculosis* and *Pseudomonas aeruginosa*. ### Significant Trends and Changes * **Shift in Antibiotic Discovery:** The research marks a significant shift from modifying existing antibiotics to designing entirely new classes of compounds using AI. * **Exploiting Inaccessible Chemical Spaces:** AI enables exploration of vast chemical spaces that were previously inaccessible through traditional methods. ### Notable Risks or Concerns * **Antibiotic Resistance Crisis:** The research directly addresses the escalating global threat of drug-resistant bacterial infections, which cause millions of deaths annually. * **Challenges in Synthesis:** The process highlighted that not all theoretically designed compounds can be successfully synthesized, indicating a practical hurdle in drug development. ### Material Financial Data * The research was funded, in part, by: * The U.S. Defense Threat Reduction Agency * The National Institutes of Health * The Audacious Project * Flu Lab * The Sea Grape Foundation * Rosamund Zander and Hansjorg Wyss for the Wyss Foundation * An anonymous donor ### Key Personnel * **Senior Author:** James Collins, Termeer Professor of Medical Engineering and Science at MIT. * **Lead Authors:** Aarti Krishnan (MIT postdoc), Melis Anahtar (former postdoc), and Jacqueline Valeri (PhD ’23). ### Contextual Interpretation The article highlights a critical advancement in the fight against antibiotic resistance, a major global health threat. The **36 million** compounds designed represent a massive computational effort to explore novel molecular structures. The fact that the top candidates are **structurally distinct** and work via **novel mechanisms** is crucial, as it means bacteria are less likely to have pre-existing resistance to these new drugs. The success in identifying **NG1** against *N. gonorrhoeae* and **DN1** against MRSA, and their demonstrated efficacy in mouse models, provides strong evidence for the potential of this AI-driven approach. The **nearly 5 million deaths per year** statistic underscores the urgency and importance of this research. The collaboration with Phare Bio and the intention to apply the platform to other pathogens like *Mycobacterium tuberculosis* (a leading cause of infectious disease mortality) and *Pseudomonas aeruginosa* (known for its multidrug resistance) indicate a strategic and comprehensive approach to tackling the antibiotic resistance crisis.

Using generative AI, researchers design compounds that can kill drug-resistant bacteria

Read original at MIT News

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA).Using generative AI algorithms, the research team designed more than 36 million possible compounds and computationally screened them for antimicrobial properties.

The top candidates they discovered are structurally distinct from any existing antibiotics, and they appear to work by novel mechanisms that disrupt bacterial cell membranes.This approach allowed the researchers to generate and evaluate theoretical compounds that have never been seen before — a strategy that they now hope to apply to identify and design compounds with activity against other species of bacteria.

“We’re excited about the new possibilities that this project opens up for antibiotics development. Our work shows the power of AI from a drug design standpoint, and enables us to exploit much larger chemical spaces that were previously inaccessible,” says James Collins, the Termeer Professor of Medical Engineering and Science in MIT’s Institute for Medical Engineering and Science (IMES) and Department of Biological Engineering.

Collins is the senior author of the study, which appears today in Cell. The paper’s lead authors are MIT postdoc Aarti Krishnan, former postdoc Melis Anahtar ’08, and Jacqueline Valeri PhD ’23.Exploring chemical spaceOver the past 45 years, a few dozen new antibiotics have been approved by the FDA, but most of these are variants of existing antibiotics.

At the same time, bacterial resistance to many of these drugs has been growing. Globally, it is estimated that drug-resistant bacterial infections cause nearly 5 million deaths per year.In hopes of finding new antibiotics to fight this growing problem, Collins and others at MIT’s Antibiotics-AI Project have harnessed the power of AI to screen huge libraries of existing chemical compounds.

This work has yielded several promising drug candidates, including halicin and abaucin.To build on that progress, Collins and his colleagues decided to expand their search into molecules that can’t be found in any chemical libraries. By using AI to generate hypothetically possible molecules that don’t exist or haven’t been discovered, they realized that it should be possible to explore a much greater diversity of potential drug compounds.

In their new study, the researchers employed two different approaches: First, they directed generative AI algorithms to design molecules based on a specific chemical fragment that showed antimicrobial activity, and second, they let the algorithms freely generate molecules, without having to include a specific fragment.

For the fragment-based approach, the researchers sought to identify molecules that could kill N. gonorrhoeae, a Gram-negative bacterium that causes gonorrhea. They began by assembling a library of about 45 million known chemical fragments, consisting of all possible combinations of 11 atoms of carbon, nitrogen, oxygen, fluorine, chlorine, and sulfur, along with fragments from Enamine’s REadily AccessibLe (REAL) space.

Then, they screened the library using machine-learning models that Collins’ lab has previously trained to predict antibacterial activity against N. gonorrhoeae. This resulted in nearly 4 million fragments. They narrowed down that pool by removing any fragments predicted to be cytotoxic to human cells, displayed chemical liabilities, and were known to be similar to existing antibiotics.

This left them with about 1 million candidates.“We wanted to get rid of anything that would look like an existing antibiotic, to help address the antimicrobial resistance crisis in a fundamentally different way. By venturing into underexplored areas of chemical space, our goal was to uncover novel mechanisms of action,” Krishnan says.

Through several rounds of additional experiments and computational analysis, the researchers identified a fragment they called F1 that appeared to have promising activity against N. gonorrhoeae. They used this fragment as the basis for generating additional compounds, using two different generative AI algorithms.

One of those algorithms, known as chemically reasonable mutations (CReM), works by starting with a particular molecule containing F1 and then generating new molecules by adding, replacing, or deleting atoms and chemical groups. The second algorithm, F-VAE (fragment-based variational autoencoder), takes a chemical fragment and builds it into a complete molecule.

It does so by learning patterns of how fragments are commonly modified, based on its pretraining on more than 1 million molecules from the ChEMBL database.Those two algorithms generated about 7 million candidates containing F1, which the researchers then computationally screened for activity against N.

gonorrhoeae. This screen yielded about 1,000 compounds, and the researchers selected 80 of those to see if they could be produced by chemical synthesis vendors. Only two of these could be synthesized, and one of them, named NG1, was very effective at killing N. gonorrhoeae in a lab dish and in a mouse model of drug-resistant gonorrhea infection.

Additional experiments revealed that NG1 interacts with a protein called LptA, a novel drug target involved in the synthesis of the bacterial outer membrane. It appears that the drug works by interfering with membrane synthesis, which is fatal to cells.Unconstrained designIn a second round of studies, the researchers explored the potential of using generative AI to freely design molecules, using Gram-positive bacteria, S.

aureus as their target.Again, the researchers used CReM and VAE to generate molecules, but this time with no constraints other than the general rules of how atoms can join to form chemically plausible molecules. Together, the models generated more than 29 million compounds. The researchers then applied the same filters that they did to the N.

gonorrhoeae candidates, but focusing on S. aureus, eventually narrowing the pool down to about 90 compounds.They were able to synthesize and test 22 of these molecules, and six of them showed strong antibacterial activity against multi-drug-resistant S. aureus grown in a lab dish. They also found that the top candidate, named DN1, was able to clear a methicillin-resistant S.

aureus (MRSA) skin infection in a mouse model. These molecules also appear to interfere with bacterial cell membranes, but with broader effects not limited to interaction with one specific protein.Phare Bio, a nonprofit that is also part of the Antibiotics-AI Project, is now working on further modifying NG1 and DN1 to make them suitable for additional testing.

“In a collaboration with Phare Bio, we are exploring analogs, as well as working on advancing the best candidates preclinically, through medicinal chemistry work,” Collins says. “We are also excited about applying the platforms that Aarti and the team have developed toward other bacterial pathogens of interest, notably Mycobacterium tuberculosis and Pseudomonas aeruginosa.

”The research was funded, in part, by the U.S. Defense Threat Reduction Agency, the National Institutes of Health, the Audacious Project, Flu Lab, the Sea Grape Foundation, Rosamund Zander and Hansjorg Wyss for the Wyss Foundation, and an anonymous donor.

Analysis

Conflict+
Related Info+
Core Event+
Background+
Impact+
Future+

Related Podcasts